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We theoretically analyze the dynamics of the expansion of cylindrical layers of 
Newtonian, power-law, and elastoviscous liquids, as well as an elastic body. We 
consider inertial expansion and expansion induced by gas pressure inside the 
cavity. 

One of the basic elements of technological processes of obtaining products from poly- 
mer materials is inflation formation [i]. Inside cavities of a liquid polymer preparation 
an increased pressure is created, usually via the injection of air into the cavity, and the 
cavity begins to expand under the action of the internal pressure. From the practical 
point of view, as applied to inflation and also to other processes in which radial expansion 
of cylindrical liquid layers occurs, the interesting parameters are the rate of expansion, 
the thickness of the cavity wall, and the radius of the cavity. The rheological behavior 
of the liquid significantly affects these parameters. The purpose of the present paper is 
to study theoretically the effect of the rheological behavior of the liquid on the dynamics 
of the expansion of a liquid layer. The following values of the physical parameters are 
typical for liquid polymer materials [1-3]: 9 ~ 103 kg/m3, ~ ~ 102-104 Pa-sec, ~ ~ 0.03- 
0.05 J/m 2, e ~ 10-2-10 sec, G % 10-103 Pa, ~i = 0.i. In many cases [1-4] the only rheo- 
logical parameter different from a Newtonian fluid is the viscosity, and the liquid is charac- 
terized by a power law (for example, in [i, 4]K ~ 102-106 kg/(m.sec2-n), n = 0.5). 

Assuming that the liquid is incompressible during the radial expansion of the cylindrical 
layer, we study two regimes: inertial expansion (impulse) and inflation due to gas pressure 
on the inner walls of the cavity inside the layer. In the first case the kinetic energy 
of the layer of fluid per unit length E is specified. Then assuming axisymmetric flow 
and the incompressibility condition , the initial velocity of the outer boundary of the 
layer V2o is given by 

/ / /  E 
V~o = 2 (i) 

~pr=o In (r2o/r~o) 

As a scale of velocity we choose the quantity 

Vo -: ] /2El[r ip (r~o-- r~0)], 
and w i t h  the  he lp  o f  (1) and (2) we o b t a i n  an e x p r e s s i o n  f o r  the d imens ion less  i n i t i a l  
v e l o c i t y  o f  the  o u t e r  boundary o f  the l a y e r  f o r  the case o f  i n e r t i a l  expans ion  

( 2 )  

2 
F Q r io  

v ~  V , Q =  1 . in [ l / (1  - -  Q)] r~o 
(3) 

We note that vo is the velocity of a layer of ideal fluid without surface tension in the 
limit t + ~| 

In the other case, where the expansion of the layer of liquid is driven by gas pressure 
inside the cavity, the internal energy of the gas per unit length El is given and the initial 
velocity of the liquid is naturally assumed to be zero. In this case as a scale of velocity 
we use the quantity Vol as given by (2), except that E is replaced by El. We note that Vo~ 
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is the velocity which a layer of ideal fluid, without surface tension, acquires from inflation 
into a vacuum in the limit t § ~, when the energy of the gas is completely transformed into 
the kinetic energy of the fluid. 

The initial gas pressure is obtained from the Clapeyron equation and is equal to 

pto ('~--1) E, = 2 " (4 )  
~/ '10 

Typically [i, 4] the pressure plo is of order 105-107 Pa; this must be considered a lower 
bound to the possible range of plo. The quantity r=o is of order 10 -2 m, and the radius r~o 
can be either much smaller than r=o or comparable to it. The energy El (for p~o = 107 Pa, 
y = 1.4, r~o = 0.4.10 -2 m) is, according to (4), about 103 J/m, and the velocity vow, 
according to (2), for r2o = 10 -2 m and p = 103 kg/m 3, is of order 102 m/sec. 

Assuming that the expansion of the gas is adiabatic and using (4), we can find the gas 
pressure inside the cavity at any time during the motion 

( ~ - -  1)Q(1 __ Q ) v - 1  ( 5 )  
Pl = 2r~V 

Here we have assumed that the gas pressure does not vary over the cross section of the 
cavity, which will be correct when the velocity of expansion is small compared to the speed 
of sound. The inner radius of the cavity is related to the outer radius by the following 
relation, which follows from the conservation of mass for the liquid: rl = 2/~-Q. 

The equation of continuity and the equation of motion of the liquid in the case of 
radial motion, written in terms of the dimensionless quantities, have the forms 

_ _  ao ap 1 a _ _ _ _  Orv - - 0 ,  OV ~_V --- - -  - ~ - - -  - - ( r T r r  ) TOO (6 )  
ar Ot Or ar r dr r 

The equation of motion (6) can be integrated with the help of the boundary conditions for 
the radial stresses 

( - -  P + " r~) l  . . . .  = - -  Pt + - -  
1 i 

, ( - - p + T , , ) I  . . . .  - p =  
We r i We r., ( 7 )  

With the help of the integral of the equation of continuity in (6) (v = v2r2/r), Eq. (5), 
and the boundary conditions (7), we integrate the equation of motion (6) between the inner 
and outer boundaries of the liquid layer and obtain 

dv~ 

dt 

P~ 

2 (~,--1)Q(! --Q)v-, 
In y ,~ _ Q ' 2 (r~ - .  Q) 2 (r~ - Q)~ 

1 1 _~ ~ + I r~ In 2 ' 
w ~  , I / r ~  - Q 

F2 
I .... J' T ~ - - z o o  dr, .dr2 _ v 2 .  

r dt 
- V  ,.~ - Q 

(8) 

For inertial expansion we have v2 = v ~ and ra = i at t = 0; for inflation driven by gas 
pressure we have v2 -- 0 and r2 -- 1 at t -- 0. 

The deviator stresses Trr and Tee in (8) must be related to the expansion velocity of 
the layer and its radius with the help of the rheological equation of state; then (8) will 
be closed and we can calculate the expansion of the layer. For a Newtonian fluid T -- 2~D, 
and for the radial motion considered here 
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4 r~v~ I = 2Q v~ 

" ~ , - -  "~oo -- ~ e  r ~ ' Re  G (r~ - -  Q) ( 9 )  

For the typical values of the parameters p = i03 kg/m 3, Vot = 60 m/sec, r2o = i0 -2 m, ~ = 
i02-i0 ~ Pa-sec, the Reynolds number Re varies between 0.06 and 6. 

r~ - - i  

For a power-law liquid with the rheological equation of state [2] ~-2/([2SPD:] - -~ -D 

we have 

�9 ~ - - ~ o o  = - -  K ~  �9 I . . . . .  ( r~v~)  ~ 2 2 ~  �9 ( 1 0 )  
, ' 2/,~ ( r~  - -  Q)~  r~ 

Putting K = 102 kg/(m.sec~/2), n = 0.5, p = i03 kglm 3, Vo~ = 60 m/sec, 
dimensionless complex KI is about i0 -=. 

For an "elastic liquid" (i.e. a flexible elastic body) we have 
and hence 

\ 

Trr --- T'OO = 2 T  1 ---t'~_ ~-F r ~' r2 / ,  

�9 r "  I - -  r 2  ~ + r ~ ; 

I-~ T [ Q(l - - r ~  r 2 ] 
_~ 2 " 4-  ln ~ -+ ln ( 1 - -  Q) . 

r2o = 10 -2 m, the 

~ = 2 G ( B - - ~ I B  -t) [3]  

(11) 

For the typical values G = 10-103 Pa, al = 0.i, p = 103 kg/m ~, Vol = 60 m/see, we obtain T 
i0-6_i0 -4 " 

Before discussing the case of an elastoviscous liquid, we consider the aymptotic behavior 
of an initially thin liquid layer for which Q << I. In this case (8) reduces to 

4 dr2 d o s  = ? - - - !  2 r ~  P2 - - + I ~ ,  - -  = v2, (12) 
dt r~ v-1 Q W e  Q dt 

where the quantity 11 is equal to the following expressions for a Newtonian, power law, and 
"elastic" liquid, respectively: 

i i) 
Re r~ '  rz - / \ \  r2 , r~ (13) 

Note that for a thin layer r2 and v2 can be considered as the radius and velocity of the mid- 
surface of the film, and Q = 2ho/ro. 

We consider now an elastoviscous Maxwellian liquid with the rheological relation [2] 

03 

Or, 
T ' D . ~ '  T. f2  0 . ~ +  2[~ D.  ( 1 4 )  - -  + ( v ' v ) ~  - -  + x ' D T  -,~ . . . .  
0 0 

For the case of radial motion, and assuming the film is thin, we have at once (12) for the 
motion of the elastoviscous liquid, where 

i i  Trr - -  "%o  d%~ 1 2 Trr - -  2S  
r2 ' dt  0~ r rz 

d'%o ( 1 v.__Z_2 ~ v~ 
dt ---'--~t + 2 r2 / "%o + 2S r~ 

(15) 
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When t = 0 we assume TTr = ~00 = 0, S =  (Re01)-1. 

For v e l o c i t i e s  Vo~ % 1-10 2 m / s e c ,  0 ~ 10-2-10 s e c ,  ro ~10-2 -10  -~ m, t he  d i m e n s i o n l e s s  
r e l a x a t i o n  t ime 0~ v a r i e s  be tween  10 -x and 10 s .  

E q u a t i o n  (12) and the  c l o s i n g  r e l a t i o n s  (13) or  (15) can a l s o  be o b t a i n e d  d i r e c t l y  from 
the  q u a s i - t w o - d i m e n s i o n a l  dynamica l  e q u a t i o n s  of  a t h i n  f i l m  [5, 6] by a v e r a g i n g  a l l  quan-  
t i t i e s  over the cross section of the film. 

The simplified equation (12) can be solved analytically in several important cases. We 
consider first the inertial expansion of the liquid layer into a vacuum. In this case we 

put y = 1 and p2 = 0 in (12) and the integration is carried out with the conditions r2 = v2 = 
1 at t = 0 (here vo is the initial velocity of expansion). For a layer of ideal fluid (Re = 

=) with surface tension, we obtain from integrating (12) 

t'~ = 1  + t  2l~ (16) 
Q We 

After a time t = QWe/4 the cylindrical film has expanded to its maximum size of r2 = 1 + 
QWe/8 and then begins to collapse. For vo ~ 10-60 m/sec, 0 = 103 kg/m 3, ro = 10 -2 m, a 
0.03 - 0.05 J/m 2, we have We % 104-106 . Putting Q = 10 -I and We =i04, weobtain a maximum 

radius of the film of order 1 m. 

In the case of a viscous Newtonian fluid, ignoring surface tension, we obtain from (12) 
that when Re > 4 the cylindrical layer expands to infinity and the dependence of the radius 

on time is given by 

r~--I 4/Re ln [  4 + ( 1  4 ) ] 
1 -- 4/Re (1 - -  4/Re) ~ - ~ e  Re r2 = t. (17) 

It follows from (17) that when Re > 4 the viscous layer, expanding inertially, approaches 

infinity with a finite velocity v2~ = (Re -- 4)/Re. This is because when Re > 4 the kinetic 

energy of the layer at the initial instant of time exceeds the total energy dissipated during 

the expansion to~iflfinity; the ratio of the kinetic energy to the energy dissipated during 

the expansion to infinity is equal to Re/(8 -- 16/Re) and exceeds unity for Re > 4. Only 

when Re = 4 does this ratio become equal to one and then 

r 2 = l / 1 - i - 2 t ,  v2~-+0. (18) 

When Re < 4 the initial kinetic energy is dissipated during the expansion of the layer to a 
finite radius given by r2max = 4/(4-Re). The dependence of the radius on time is given by 
(17) as before, which shows that in general the value r2max is reached after an infinite 

time. 

We note that for vo = 60 m/sec and Re = 5 the layer approaches infinity with a velocity 
of 12 m/sec; when ro = 10 -2 m and Re = 3.5 the layer expands to a maximum radius of 8-10 -2 m. 

Similar behavior occurs for the inertial expansion of a power-law liquid layer (surface 
tension is again neglected). Integrating (12) and (13) we find that when KI ~ n/(2 -- n) 
the cylindrical film expands to infinity andv2~ = [i -- (2 -- n)K1/n] I/(2 -- n); for Kx = 10 -2 , 
n = 0.5, vo = 60 m/sec we obtain a finite velocity for the approach to infinity of 58.8 m/sec. 

When KI > n/(2 -- n) the layer expands to a finite maximum radius r=ma x = [i -- n/[(2 -- n)- 
Kx]]'I/n, and gradually slows down as it approaches this radius. 

In the case of inertial expansion of a thin layer of "elastic liquid" we find, intesrat- 
ing (12) and (13), that the layer expands to a finite radius r2max = (2 2~) -~ + #i + I/(8T), 
then the layer begins to contract until its radius reaches the value r2min = --(2/~) -~ + 
r + I/(8T). Since energy losses are zero for an "elastic liquid" this process will repeat 
periodically. For T = i0 -~, ro = 10 -2 m the layer expands to a maximum radius of 0.7 m. 

The results for the inertial expansion of a thin layer of elastoviscous liquid were 
obtained by a numerical integration of (12) and (15) and are shown in Figs. 1 and 2. 
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As in the case of a Newtonian fluid, when Re~4 the film approaches infinity with a 
certain velocity v2~. When Re 4 the radius of the film approaches a finite value r2~ in 
the limit t + ~. When e~ 4 the dependence of r2w and v2~ on Re can be described with satis- 
factory accuracy (the error is % 5%) with the help of the relations between v2~ , r2ma x and 
Re given above for a Newtonian fluid. When 0~ > 4 the elastic forces begin to affect the 

quantities v2~ and r2~. For example when Re = 3.75 we have r2max = 16 for a Newtonian fluid, 

whereas for an elastoviscous liquid with 0~ = i0 we have r2~ = 5.57. Assuming e = i0 -2 sec, 
vo = i0 m/sec, ro = i0 -2 m (~ = i0), we find that a film of elastoviscous liquid with Re = 
3.75 (~ = 0.266.102 Pa-sec) expands to a maximum radius of 5.57o10 -2 m, whereas a film of 
Newtonian fluid with the same Reynolds number expands to the value 0.16 m. 

For large e~ or small Re the vibrations of the film are damped. The relaxation time is 
about a quarter of a period of vibration. The internal stresses increase from zero at the 
initial instant of time up to a maximum value after a time approximately equal to the re- 
laxation time of the material. 

The simplified equations for a thin layer can be used to analyze the effect of the 
internal gas pressure in the cavity and the back pressure P2 of the surrounding medium on the 

dynamics of the expansion of the layer. For the case of an ideal fluid we find from (12) 

dr~ . /  1 8 2p2 - v2 = + | /  § 1 + (1 --r~)  4- (1 - -r~) ,  (19)  
dt - - - 4 -  

Obviously we must have P~(? -l)Q/2-=pilt=o 

In the absence of back pressure and surface tension (p2 = 0, We = ~) the film expands to 
infinity under the action of the gas pressure inside the cavity and the velocity approaches 

its largest possible value V2max = i. When there are surface tension forces or back pressure 
of the surrounding medium the radius of the film oscillates. A numerical solution of (19) 
shows that when We = ~, P2 = 0.00333, Q = 0.i, y = 1.4 the film oscillates between finite 
limits i~r=~3.17. The maximum value of the velocity during these oscillations is deter- 
mined by (19) and given by (We = ~) 

Vzmax = V/- ' I  -~- ~ ? " 1 2p2 

For the above values of the parameters, V2max = 0.48 and is reached when r = 1.9. Using 
the velocity scale Vol = 60 m/sec (El ~ 103 J/m) and p = 103 kg/m 3, for the above values of 
Q and y we obtain a pressure inside the cavity at the initial time equal to 0.72.10 s Pa and 
a back pressure 0.12~ s Pa. At the initial time, when the radius of the film is, for 
example, 10 -2 m, its velocity is zero and when the film radius is 1.9.10 -2 m the velocity 

reaches its maximum value of 28.8 m/sec. The maximum radius of the film during the oscillations 
is 3.17-10 -2 m. 

If the back pressure is small in comparison with the initial pressure of the gas inside 
the cavity, i.e. p= << (u -- i) Q/2, then (20) can be simplified and reduces to 

v2~ax = 1 __ _7__Y I 2p2 JVv' " 
2 . ( V - - 1 ) Q  

(21) 

Viscous forces can further decrease the value V2ma x. It is also obvious that in the presence 
of internal pressure (and p2 = 0, We = ~) the viscous forces, unlike the case of inertial 
expansion, can never stop the film at a finite distance; it always expands to infinity (this 
follows from (12) and (13)). 

We consider the maximum velocity and radius for the expansion of a film of "elastic 
liquid" in the presence of back pressure. We find from (12) 

r i 8 C 121 v2 = _4- V 1 r~(V_l ) -~--(1--r2)+2QWe -~-v- T (1--r2)+2T 1-- ~ " (22) 
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Fig. i. Time dependence of the velocity and radius of a thin layer (Q = 0.02) of 
elastoviscous fluid for inertial expansion into a vacuum. 0~ = i: curve i) Re = 

0.9375; 2) Re = 2.5; 3) Re = 3.75; 4) Re = 7.5. For curves 5 and 6) Re = 3.75: 5) 

01 = 0.i; 6) 01 = I0. 

Fig. 2. Dependence of the azimuthal Tee (curves 1-5) and radial Trr (curves 6 and 
7) stresses on time for inertial expansion into a vacuum of a thin layer (Q = 0.02) 
of elastoviscous fluid, e~ = 1.0: Curves I and 6) Re = 0.9375; 2) Re = 3.75; 
3 and 7) Re = 7.5. For curves 4 and 5) Re = 3.75: 4) 01 = 0.i; 5) 01 = i0. 
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Fig. 4 

Fig. 3. Time dependence of the velocity of expansion into a vacuum (p2 = O) of 
a thin layer (Q = 0.02) of an elastoviscous fluid driven by pressure inside the 
cavity, el = 1.0: curve I) Re = 15; 2) Re = 7.5; 3) Re = 3.75; 4) Re = 2.5; 5) 
Re = 0.9375. For curves 6 and 7) Re = 3.75: 6) el = 0.i; 7) el = i0. 

Fig. 4. Time dependence of the velocity of expansion into a vacuum (p2 = 0) of 
a layer of Newtonian fluid with Q = O(i)driven by pressure inside the cavity. 
y = 1,4, Q = 0.9996: curve i) Re = 60; 2) Re = 30; 3) Re = 15; 4) Re = 7.5. 
y = 1.4, Re = 7.5: 5) Q = 0.75; 6) Q = 0.99. 7) y = 3.0, Re = 15, Q = 0.9996. 
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Assuming that 2(p2/Q + T)/(y -- I) << 1 and neglecting the contribution of surface tension 

we obtain 

U2max ~ I Y[2(PdQ+T)] v-~ ____ ? ] 

2 ? -- 1 ' rz~ax ~" l / '2 (p~lQ + T) 
(23) 

The maximum velocity of the film is acquired at a distance r, ~_{(y--!)/[2(p=/Q-~-T)]} 1~v 

(the latter three equations are valid when r, >> i). For p= = 0, y = 1.4, T = 10 -4 we find 
V2ma x = 0.92, r2max = 71, r, = 15. Hence in the case vol =60 m/sec, ro = 10-=m, the maximum 
velocity is 55 m/sec and is reached at a radius of 0.15 m; elastic forces in the liquid 

prevent the film from expanding to a radius larger than 0.71 m. 

The results of a calculation of the radial expansion of a thin layer (Q = 0.02) of a 
viscoelastic fluid in the presence of pressure inside the cavity are shown in Fig. 3. We 
see that the characteristics of the expansion of the layer (V2ma x and v2~) depend significant- 
ly on the rheological parameters of the material. For example, when ~i = i0 and Re = 3.75 
we find for Vol = i0 m/sec the value V2max ~ 6.5 m/sec. 

In the calculation of the motion of a layer of liquid with a large initial thickness 
(Q of order unity) a numerical integration of (8) must be done with the closing rheological 
equations (9) through (ii) for a Newtonian, power-law, and "elastic" liquid, respectively. 
The calculations show that the qualitative nature of the phenomena observedin the analysis 
of the dynamics of a thin layer does not change when Q = 0(i). For example, calculation 
of the radial inertial expansion of a Newtonian fluid with Q = 0.9996 shows that when Re = 

7.5 the radius of the layer approaches a finite value r2max = 1.3, whereas when Re = 11.25 
the layer expands to infinity. 

In Fig. 4 we show the time dependence of the velocity of radial expansion for a New- 
tonian fluid with Q = 0(I) in the presence of internal pressure (and p2 = 0, We = ~) for 
different values of Re and y. We see that the layer accelerates to a value V2max and then 
its velocity starts to decrease. The quantity V2max and the time during which the layer 
accelerates decrease with increasing Q and y and with decreasing Re. The calculations for 
large times show that the velocity decreases to a certain minimum value V2min and then v2 
starts to slowly increase. For example when Q = 0.9996, y = 1.4, Re = 3.75 the fluid layer 
accelerates to V2max = 0.16 during a time t~ = 0.i and then the velocity decreases to the 
value V2min " 0.021 which is reached at the time t2 = 50.1. The velocity then slowly in- 
creases and finally (t3 = 200) reaches the value 0.023. When Vol = 60 m/sec, ro2 = 10 -2 
m we obtain tl = 0.167"10 -4 sec, t2 = 0.835"10 -2 sec, V2max = 9.6 m/sec. 

NOTATION 

E, kinetic energy of the liquid layer per unit length at the initial instant of time 
(in this case, i.e., inertial expansion, the characteristic velocity V = Vo); El, internal 
energy of the gas in the cavity at the initial time (in this case, i.e., expansion driven 
by the internal gas pressure, V = v01); p, ~, ~, density, viscosity, and surface tension 
of the liquid; r~ and r=, inner and outer radii Of the layer in units of r20 (r~o and 
r20 are the initial values); p~o, initial pressure of the gas inside the cavity; v20, initial 
velocity of motion of the outer boundary of the layer (dimensionless for inertial expansion: 
v ~ = V=o/Vo); p~, gas pressure inside the cavity, in units of pv02; y, adiabatic index; r, 
radical distance, in units of r20; v, velocity of the liquid, in units of V; p, pressure of 
the liquid, in units of 0V2: Trr and T89 , radial and azimuthal deviator stresses in the 
liquid, in units of pV2; t, time, in units of r20/V(t = t,V/r20); p2, pressure of gas ex- 
ternal to the layer, in units of 0V2: K and n, rheological parameters of a power-law liquid; 
~i, dimensionless rheological parameter of an "elastic liquid"; G, modulus of elasticity; 
ho and ro, initial thickness and radius of a thin layer (in the case of a thin film the 
radius r is in units of ro); 0, relaxation time (el = eV/r20); T and D, deviators of the 
stress tensor and deformation rate tensor; B, Green's tensor; ~, rotation tensor; v, velocity 
vector of the fluid; Q, dimensionless parameter characterizing the initial thickness of the 
liquid layer; We = 0V2r2o/~, Weber number; K~ = 4K(2V/r2o) n-~/(pVr2o); T = G(I + a~)/(pV2); 
S = U/(80V2), Re = 0Vr2o/~, Reynolds number. 
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SETTLING T~IE OF LIQUID IN TANKS UNDER THE ACTION OF 

MINOR OVERLOADING 

�9 K. Kalinin and V. A. Nevrovskii UDC 532.529 

A theoretical model is proposed for determining the time to, which is the basis 
for the concept of ascent and division of large gas bubbles in liquid. The 
estimate of to given by this model isin qualitative agreement with experiment. 

One method of ensuring continuity of a liquid flow pumped out from a tank under reduced 
gravitation is to apply a small acceleration g to the tank (g < go). Under the action of 
this acceleration, the liquid flows toward the intake unit (conventionally, downward) and the 
bubbles of pressurization gas and liquid vapor which it contains move to the opposite wall of 
the tank (float upward). 

To estimate the time of this process to, various models are proposed. In [i], for 
example, it was recommended that liquid motion be considered by analogy with the free fall of 
a solid in a field g << go and that the fall time tfall be determined from the formula 

s -  (1) 
2 

Experiments [i] show that to > tfall, and it was recommended in [i] that the value to = 
(2-5)tfall be taken. This means that in to, as well as tfall , account is taken of the 
time of partial damping of the liquid, the time of bubble ascent, and possibly the duration 
of other processes. 

The practical recommendation of [i] as regards determining to is now justified, by con- 
sidering the ascent of gas bubbles in the liquid under the action a small accelera- 
tion g = (i0-2)-(i0-4)go rather than the fall of the liquid to the intake unit. It is 
assumed that the pressurization gas is initially concentrated in a single bubble, which is 
at the intake unit and then moves to the opposite end of the tank. As the bubble rises, it 
breaks down into several smaller bubbles, which also, in turn, break down further, thus 
creating a cluster of bubbles. 

To describe the motion of an individual bubble, the semiempirical approach of [2] is 
used. According to [2], the velocity of steady motion of so-called large bubbles does not 
depend on their size 
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